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SUMMARY

Photographic observations of meteors could provide more reliable
information on the meteoroid hazard to space travel if meteor ablation and
radiation phenomens were better understood.

Static tests in an ultrahigh-enthalpy plasma jet reveal that artificial
meteors of gabbro or basalt ablate and radiate S1mllarly to samples cut from
natural stone meteorites. Likewise, steel specimens duplicate the behavior
of natural iron meteorite material. During ablation. the comparable materials

grow in frontal area, decrease in average density, and emit light in the same

manner . ‘ é i
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PREPIES

L model length, m

Ly initial model length, m

m body mass, kg

Q¥ effective heat of ablation, J kg™t

QO - model cold-wall heating rate, W

Qrad model radiative power, W

do cold-wall stagnation-point heat-transfer rate, W m™=
do cale calculated stagnation-point heat-transfer rate, W m™=
do meas measured stagnation-point heat-transfer rate, W m™2
drad radiative stagnation-point hest-transfer rate, W m -
r radius, m

T maximum jet radius, m

t time, sec

v velocity, m sec™ %

Vers ~ effective velocity, m sec™

Z zenith angle measured from vertical, radian

& thermal diffusivity, m® sec™ %

) atmospheric density, kg mf?

Pere effective atmospheric density, kg m™2

Py test body density, kg m™3 |

To luminous efficiency factor, W sec*kg™ im™5

INTRODUCTION

Although meteoric phenomena have been systematically studied for many
years, world-wide interest in space travel has engendered new emphasis in the
subject. In addition to the hazards they add.to space travel [1], meteors
provide examples of bodies in hypervelocity atmospheric entry and are,
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“therefore, of intrinsic interest to aerodynamicists [2,3]. A more basic
reason for the study of meteoroids and meteorites rests in the clues they
may furnish as to the origin of the solar system.

The primary knowledge of interplanetary debris stems from observations
of metgors and examinations of the world's collections of meteorites. 1In
spite of many difficulties, a considerable store of information has beén
obtained by astronomers during the past several decades. Photographs from
two or more cameras with rotating shutters have provided sufficient informa-
tion to détermine the velocity, altitude, brightness, and angle of entry for
meteors ranging in mass down.to about 107* grams [h]. Smaller meteors can be
detected by means of their radar echoes [5].

Although the random nature of meteors makesva systematic study difficult,
the number flux of meteoroids in the vicinity of the earth has been determined
as a function éf estimated mass, as is shown on Fig. 1. The curve illustrated
is divided into three major regions -- namely: that containing numerous dust
particles or micrometeoroids; a middle region populated by cometary meteors and
including the particle masses between 10™% and 10° grams that offer the greatest
hazard to space travel; and, finally, a region of low flux populated by large
asteroidal meteoroids. The curve is approximate because there is no precise
way of determining the initial masses, especially of those meteors that do not
survive entry. More important is the fact that meteor composition, density,
and size are no better known than meteor mass. There is some evidence that the
many small ﬁeteors which do not survive entry are mainly of cometary origin
and may consist largely of ice [6].

Even though the composition of meteors for the mass range of primary inter-
est, that is, between 1074 and 10° grams, is largely unknown, it proves to be of
value to study the problem of meteor flight in a ground-based facility where

specimens having compositions similar to those of known meteorites can be
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subjected to the environment of an actual meteor entry. The purpose of this
paper is to present the results of experiments designed to study the drag,
ablation, and radiation behavior of meteor models in simulated atmospheric
entry. A complete knowledge of such behavior woﬁld hopefully allow more pre-

cise estimates, such as that in Fig. 1, to be prepared.
ANALYSES OF METEORS
Typical Meteor Trails

The tréjectories of meteors that have been photographed by the Super-Schmidt
cameras [ 7] allOW'delineatioﬁ of typical velocity and altitude ranges. Fig. 2
shows such trajectories of a number of meteors and includes one that is believed
to be of asteroidal origin. These trajectories were selected at random from
several hundred photographed in New Mexico, U. 8. A. [8]. They cover an altitude
range between 110 and 60 km with the majority terminating above TO km. Although
the speeds vary from about 11 to TO km/sec, most are in the 15 to 30 km/sec range.
However, for any given meteor, the observed portioﬁ of the entry occurs at very
nearly constant velocity.

From the momentum equation taken in the flight direction:

av 1 2
—— T — + l
m It > CppV=A + mg cos z (1)

The ballistic parameter, m/CpA, can be derived:

n -(1/2)pv®

Coh (av/dt) - g cos = (=)

From Eq. (2), curves of the ballistic parameter as functions of altitude for
the meteor trajectories of Fig. 2 can be determined. They are presented in
Fig. 3. No assumptions need be made as to meteor size, shape, density, or com-
position, nor need there be any restrictions on body rotation. If the drag

coefficient remains'roughly constant, it might be expected that the ballistic
L
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parameter would decrease with decreasing altitude, because the factor m/A

is roughly proportional to radius, and radius should decrease as ablation pro-
ceeds. Although many m/CDA indeed decrease monotonically with altitude there
are many that apparently do not, and in fact some’ exhibit increasing values of
m/CDA 'With decreasing altitude. Fig. 3 thus demonstrates that anomalies can
be expected, and that a single meteor trail is not necessarily typical of others
of the same mass that might enter on an identical initial trajectory.

Various theories have been advanced to explain the deviations in ballistic
parameter from the behavior that would be expected. "Fragmentation" has been
proposed to explain the observation that m/CDA can decrease more rapidly than
it can be computed [7]. On the other hand, one explanation advanced for the
anomalous increases observed for m/CDA may be found in the rotational behavior
of an asymmetrical body. Although a low-drag attitude is not aerodynamically
stable, several gyrations might occur before sufficient damping locks the body
into a high-drag attitude. Once the body is in the high-drag attitude, however,
its drag should be nearly identical with that of a sphere of the same mass.

A number of arc-jet ablation tests have shown that in a low-density flow
environment the melt of many materials tends to foam as it rums rearward and.
solidifies, With a simultaneous decrease in average density and increase in
frontal area. Subsequently, the foamed maferial often breaks away to produce a
sudden increase in the ballistic parameter, m/CDA. This phenomenon, which will
be discussed in greater detail in a later section, can account both for the
observation‘that m/CpA can decrease more rapidly than would be expected and

that m/CDA can increase abruptly.
Methods of Meteor Analysis

Two methods of analyzing meteor data in principle allow determination of
the mass and density. In applying either method it is usually assumed that the
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body retains a spherical shape, that its average density is constant during

entry, and that it either loses mass at a rate [9]

CoAQY®
S kil (3)

= e e

dt 2 Q¥

or alternatively the mass loss rate is related to the luminous intensity, I,

according to the formula [10,11]:

dm _ =1 (L)

dt 3

ToV

where T,, the luminous efficiency factor, is usually assumed to be constant
and the mass lost is assumed to be completely vaporized. In the dynamical
method, Egs. (1) and (3) would completely describe the meteor in terms of mass
and density if the drag coefficient, heat-transfer coefficient, and effective
heat of ablation were all known. In the photometric method, Egs. (1) and (&)

would allow mass and density determinations if 7., the luminous efficiency

0
factor, were accurately known. Unfortunately, there are large uncertainties
in the knowledge both of the luminous efficiency factor and of the effective
heat of ablation, although drag coefficient and heat-transfer coefficient can
be estimated with sufficient precision.

In a series of papers [9,12,13], Allen and others discussed the above
methods and how they could be improved to give better estimates of meteor mass
and density. It was concluded that the dynamical method (Eq. (3)) was satis-
factory for asteroidal meteors [13], whereas the photometric method (Eq. (%))
was superidr for the smaller and faster cdmetary meteors [13]. In applying

the dynamical method, it was suggested that the power radiated from the body

be subtracted from the power absorbed by the body so that Eq. (3) would read

am (1/2)CrAoV® - Qpag
& - = (5)

and that the drag contribution of ablating vapors be considered in Eq. (1).

In the photometric method, it was recommended that the gas-cap radiation be

6



subtracted when the luminous efficiency factor was determined:

I-1I
dm _ gas cap (6)
at (1/2) T v

For the purposes of this paper, Egs. (5) and (6) constitute the defining
eqpations for experimentally evaluating effective heat of ablation Q¥ and

luminous efficiency factor, T

]

O

EXPERIMENTAL PROGRAM

A number of materials having compositions thoﬁght to be typical of meteors
were tested to determine their effective heats of ablation and luminous effi-
ciency factors. These values were then compared with calculated values and
those commonly used in meteor analysis. In addiﬁion, the melting, the foaming
of the melt, and the behavior of the liquid run-off were examined to determine
their effects on frontal area, apparent density, and mass loss rate. All tests

were conducted in air in constricted-arc supersonic jet apparatus [14].
Constricted-Arc Apparatus

Basically, a constricted-arc plasma Jjet is a combination of a cascade arc
and a Delaval nozzle as shown in Fig. 4. The céthode, protected against oxi-
dation by a small argon flow, is located at the upstream end, and a multiple-
element anode is located in the divergent section of the supersonic nozzle. A
direct-current éleétric arc is maintained between the electrodes. Air from a
pressurized'reservoir is introduced into the constrictor. The air is heated
a8 it passes near the arc, becomes conducting and eventually becomes a part of
the arc core. With the arrangement shown, the gas is maintained at a high tem-
perature even as it passes through the supersonic portion of the nozzle. The
average energy content of the stream can be determined by subtracting the power

lost to the water-cooled Eomponents from the electrical energy supplied to the
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rarc. The average total enthalpy is obtained by dividing the net power in
the stream by the air flow rate. The average enthalpy, the flow rate, and the
nozzle expansion ratio govern the test section impact pressure.

The two constricted-arc supersonic jets employed in the investigation-
differ primarily in size. The larger of the two has a throat diameter of
2.54% cm and a nozzle exit diameter of 46 cm, and operates at gross powers up
to 5 MW. The smaller has a throat diameter of 1.27 cm, a nozzle exit diameter
of 6 cm, and absorbs up to 1 MW. Photographs of the two pieces of apparatus
are shown in Figs. 5(a) and 5(b).

The performance map in Fig. 6 relates to the constricted-arc supersonic
jets used in the artificial meteor tests. It shows the operating ranges in
terms of achievable average total enthalpy as a function of test section impact
pressure. The points labeled A through E correspond to conditions at which
meteor ablation behavior was studied. Typical radial flow profiles of pressure
and stagnation—point heat-transfer rate at the jet exit of the larger unit are
shown in Fig. 7. A region near the axis of symmetry has relatively uniform

flow at known conditions.
Simulation of Meteor Entry With Constricted-Arc Apparatus

To simulate meteor entry, velocities from 11 to TO km/sec of cold gas are
desired, with a density range corresponding to that at altitudes from about
60 to 110 km. Unfortunately, it is not possible to duplicate such flows exactly
by rapid expansion of a hot gas through a nozzle. As is well known, the thermo-
chemical rate processes do not keep pace with ﬁhe rapid volume increase, and
not all of the available energy is convefted to kinetic energy. A flow of
relatively hot gas having an excess of excited species is produced that moves
at reduced velocity. However, it is possible to measure the heating rates

expected during meteor entry by exposing a metallic calorimeter to the flow
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-at the proper total enthalpy and at the proper impact pressﬁre. Furthermore,
an "effective" velocity can be defined as the square root of twice the total
enthalpy at the core, and an "effective" altitude can be defined in terms of
an "effective" density. Effective density is determined from the quotient of
impact pressure, pV2, and the square of the "effective" velocity. Performance
of constricted-arc apparatus is shown in Fig. 8 in terms of effective velocity
and effective altitude. OSuperimposed is the region of velocities and altitude
which are of interest in studies of meteors. This figure shows that the low-
velocity, high-altitude region of meteor entry can be covered by the 2.54—cm-
diameter constricted-arc apparatus, and that somewhat lower effective alti-
tudes can be reached with the smaller equipment. Again, the points labeled
A through E correspond to conditions at which mefeor ablation behavior was
studied.

For the simulation of asteroidal meteors, a series of stone and steel
test bodies were prepared. Their shapes and dimensions are given in Fig. 9.
The nose radius was selected to minimize shape changes under ablating condi-
tions. The igneous materials basalt and gabbro were selected as being repre-
sentative of natural chondrites. A low carbon steel was selected as being
representativé of natural iron meteors. In addition to the artificial meteors,
a number of specimens were prepared from a 1 kg specimen of the Plainview,
Texas, veined intermediate chondrite and from a 1.3 kg Canyon Diablo, Arizona,
coarse octahedrite iron meteorite. The densities and compositions of the
meteor tesﬁ bodies are listed in table I.

The ballistic parameters, m/CDA, of the test bodies ranged from about
30 kg/m2 for the stones to about 100 kg/m" for the steel and iron meteorite
models. Although these values are larger than would be appropriate for the
altitude range of interest, as shown in Fig. 3, the large size permits more
accurate measurements of'recession rates and flange growth phenomena than would

otherwise be possible. As a result, the tests are conducted at an altitude
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%hat is too high and a heating rate that is too low for typical meteors of the
same m/CDA. Whereas typical meteors burn up in about 1 second, the arc-jet
tests extend from 3 seconds to about 2 minutes. Further, the quasi-steady-
state tests do not simulate transient heating behavior of a meteor on a plung-
ing trgjectory because density and velocity do not vary with time.

An ablating meteor ejects either molten material or vapor, depending upon
the relative magnitude of the shear and deceleration forces that tend to tear
the body apart, and the surface tension and viscosity forces that tend to hold
it together. Although the plasma jet tests generate the proper magnitude of
shear force, sﬁrface tension, and viscosity, the deceleration force is absent.
As a result there is no inertial force to balance the drag, and fluid particles
of the artificial meteor experience larger net forces than those of actual
meteors. This problem is discussed by Chapman [15] in a similar study involv-
ing the ablation of tektites. Tests were made in a vertical jet in which the
dynamic force opposed the force of gravity. Under conditions approximating
free flight, larger flanges were generated than could otherwise be produced.
Unfortunately it was not possible to balance these forces with the present
apparatus; consequently one would expect largér losg of molten material than
would occur iﬁ the corresponding free-flight case.

Also, liguid runoff complicates the measurement of luminosity in the plasma
Jjet tests. For, whereas light from vaporizing fragments that may trail from
actual meteors contributes to the observed luminosity, melted material from
artificial ﬁeteors did not remain in view of the optical equipment and thus

could not contribute to the observed light output.
Instrumentation and Test Procedure

The plasma-jet apparatus (Fig. 5) was instrumented to measure the recession
rate, the approximate frontal area, mass loss, and luminosity of the meteor
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models at known stream conditions. Total enthalpy and impact-pressure
measurements permitted an effective velocity and an effective altitude to be
defined. Nickel-plated copper calorimeters of the same size and shape as the
meteor models yielded the cold-wall stagnation-point heat-transfer rates.

Motion picture cameras measured the rate at which the nose of the model
receded, the rate at which the frontal area increased, and provided a visual
record of each run. The motion picture coverage was augmented by still photo-
graphs both in black and white and in color. Luminosity was measured by a
light meter having a spectral response similar to that of the human eye since
meteor luminous efficiencies are often referred to a visual spectral sensi-
tivity. Although the radiation from the test bodies was very intense, it was
necessary to restrict the field of view of the light meter to a small area
surrounding each model to minimize errors due to background radiétion from the
plasma stream. However, photographs of ablating bodies indicate that most of
the light emanates from a volume having dimensions of a few body diameters,
since melted material quickly blows away. Therefore, fields of view of about
8 by 13 cm and 15 by 30 cm were established by means of appropriate collimation
for the constricted-arc jets of Figs. 5(a) and 5(b), respectively.

A scannihg monochrometer, shown in Fig. 10, measured spectral radiation
over a 0.35 to 0.70 micron wavelength band for the 98.5 and 91 km altitude test
conditions. In addition to wavelength scanning, provisions were made to monitor
radiation at various axial locations along the model in the free stream.

The teét bodies of stone and iron weré exposed to the arc-jet streams
at conditions designated in table II. Test point (A) is a condition character-
ized by relatively high altitude and high effective velocity that yielded a
relatively low>heat—transfef rate. Test points (B), (C), and (D) simulate
flight at an altitude of about 91 km but at various increasing values of effec-
tive velocity, while test point (E) simulates flight at an altitude of 72.5 km.
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Table III is a test schedule that lists the runs and includes information on

model material, test condition,and initial and final masses of the test bodies.
RESULTS AND DISCUSSION

As a result of the plasma-jet tests at controlled conditions of velocity
and enthalpy, several statements can be made regarding the ablation behavior
of meteors. First, all of the specimens "foamed." That is, each built up a
flange of relatively low-density, slag-like material that substantially

rincreased the area exposed to the flow.

Although the stones grew most in frontal area,‘even the steel and iron
meteorite materials more than doubled their frontal areas as is illustrated
by the photographs of Fig. 11l. Such behavior indicates that flange formation
may be an essential process in the flight of stone and iron meteors, and is
also known to be true of glassy meteors, the tektites [15]. Indeed, it was
found impossible to measure a vaporization rate, because the slaggy material
which built up was shed intermittently in relatively large chunks.

A second important result was the discovery that steel bodies behave in
a manner like those made of natural iron metebrite. Similarly, the igneous
rock gabbro ekhibited ablation characteristics almost identical to those of
natural stone meteorites.

The cooled foams recovered from the steel and terrestrial stone materials
were similar to those recovered from the iron and stone meteorites, respectively.
As shown in table IV, comparable materials had about the same density ratio of
foam to virgin material and exhibited about the. same decrease in foam density
with increasing heating rate. Therefore, tests with easily obtainable terrestrial
material can be expected to yield results characteristic of natural stone and
iron meteors.

Anothef noteworthy characteristic of the meteor ablation was a striking
difference between the behavior of stone and iron. Whereas both meteoritic
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and terrestrial stone surfaces melt almost immediately upon entry into the
high-temperature stream, and start foaming in a rather irregular manner, both '
meteoric iron and steel require a long time to reach melting temperature,
after which a flange of material builds up in a régular way. Ultimately the
melt b;ows away so that an abrupt change in mass occurs. Thus, for the alti-
tude and velocity range covered by the tests, heat storage is an important
mechanism for the iron and steel bodies.

Although the iron and stone models both lost mass at a more rapid rate
near the end of the tests as large blobs of froth blew away, the tests revealed
that iron and steel specimens also lose mass by an eruptive mechanism. As the
ferrous models became incandescent, small particles were ejected from the main
body with appreciable velocity and left luminous trails. Debris recovered
from the vacuum system yielded, in addition to relatively large pieces of
melted stone and iron, small magnetic spheroids that ranged in diameter from

submicron to millimeter sizes.
Frontal Ares

Curves of the area presented to the flow as a function of time are plotted
in Fig. 12(a) for stéel meteor models at test conditions (A) through (E). For
test point (A) the models were very nearly in radiation equilibrium, and there-
fore exhibited a very small change in frontal area. However, at the 91 km
altitude test points the projected areas increased by a factor of about 2-1/2
during the course of the runs, whereas at the relatively high heat flux of con-
dition (E) the model frontal area nearly doubled. The principal difference
between the five curves is the time required to start forming the flange.

In Fig. 12(b), five corresponding curves for the natural stone meteorite
models are shown. Notice here that the flange starts to form ;lmost immediately,
that a somewhat larger increase in area is generally experienced, that the rate
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of growth with time is about the same as for iron, and that the build up in

area may be followed by an abrupt decrease. At the 72.5 km altitude, test

condition (E), a flange of smaller area was produced that built up and broke

off at many times the frequency of those for the high altitude test conditions.
The similar flange growth behavior of steel and natural iron meteorite

is shown in Fig. 12(c). That of gabbro and basalt stone and natural stone

meteorite is evident in Fig. 12(d), where foaming the behavior of the gabbro

approximately matches that of the Plainview chondrite.
Recession Rate

Curves of material recession rates of the meteor models for various flow
conditions are illustrated ih Fig. 13. The rates at which the steel models
ablated are shown in Fig. 13(a). Notice that at high altitude and high velocity
practically no material was lost. For conditions (B), (C), and (D), the face
of the model recedes at an increasing rate with increasing velocity, whereas
the time interval required for the recession to start decreases. The time lag
at condition (E) is almost negligible. The results for the stone models are
gshown on Fig. 13(b). The results are similar to those for the steel model;
however, little time lag occurs in establishing recession. At 72.5 km alti-
tude the model face recedes more rapidly than at higher altitudes and fluctu-
ates in apparent length as the material melts and boils violently. Again,
good agreement is found between the steel model and the iron meteorite in
Fig. 13(c) and between the gabbro, basalt, and stone meteorite models in
Fig. 13(d). At test point (E), the specimens melted and were completely blown
away in 11 seconds or less as compared to typical melting times of 60 seconds

at the 91 km simulated altitude.
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Effective Heats of Ablation

A value of effective heat of ablation, based on stagnation-point heat- '
transfer rate, can be determined experimentally by means of Eq. (5) if the
heat input is taken from the cold-wall stagnation-point calorimeter measure-
ments listed in table II. When this is done, the following expression for
effective heat of ablation is obtained:

q - § |
Q¥ = 0, meas Yrag (7)

Py aL/dt

Here drad is the power per_unit area that the incandescent model face
radiates to its surroundings. Because a large part of the radiation loss
occurred in the infrared, to which the luminosity meter was not sensitive, an
approximate correction for radiation was determined from the brightness tem-
perature of the melting surface material observed during each test. It was
found that the brightness temperature of the liquid melt was approximately con-
stant, and was approximately equal to the melting temperature of the m@terial.
The magnitude of the radiation correction varied from about 40 percent for test
condition (A) to less than 2 percent for test condition (E). Values of effec-
tive heats of ablation so determined are shown in Fig. 14 as a function of the
Fourier modulus, at/LOZ. For small values of this dimensionless time parameter,
corresponding to high heat-transfer-rate tesfs of low thermal diffusivity
material, the effective heats of ablation approach the sum of the sensible heat
required to raise the material from room temperature to vaporization tempera-
ture and the latent heats of fusion and vaporization. As the parameter oct/LO2
increases, however, the heat stored in the unmelted portion of the body assumes

an increasing influence, and Q¥ decreases toward the latent heat of fusion.
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Luminosity Measurements

The luminous intensities of gabbro, basalt, and stone meteorite models,
as measured by a light meter with about the same spectral sensitivity as the
human eye, are compared in Fig. 15(a). The intensities, when normalized to a
distance of 100 km and plotted as a function of time, are observed to be of
comparable magnitudes. Luminous intensities for the steel and iron meteorite
models are also seen to be similar in Fig. 15(Db) although the comparison is
hampered by low levels of the light-meter signals. The stone meteor models
were about 10 times brighter than the iron and steel models at 91 km altitude
and about 3 times brighter af T2.5 km altitude.

Fig. 16 is a comparison of radiation spectra of steel and stone models
and of the jet free stream. Spectrograms generated by the scanning mono-
chrometer of Fig. 10 reveal the predominance of sodium D-line radiation of the
terrestrial and meteoric stones. The iron and steel models radiate strongly
in the blue and violet portion of the visible spectrum and the spectrogram of
Fig. 16 shows that the magnitude 6f iron radiation is greater than that of
stone in the 0.35 to 0.45 micron wavelength band .

The data presented are typical for altitudes of 91 and 98.5 km, but the
spectra for the 72.5 km altitude tests were not recorded. In an earlier test,
a spectrogram of basalt in nitrogen at a simulated altitude of about 70 km
indicated strong iron radiation, although the sodium D-line was still prominent.

Motion pictures indicated that in the test runs, the bulk of material was
lost when the melt layer blew off. When no material blew off, the model either
lost a swall amount of mass or, in two cases, gained slightly. Such mass gains
are believed to be due to oxidation and/or ﬁitriding reactions between melt
layers and the plasma stream. It would have been possible in principle to
collect all of the melted material, and by careful weighing and chemical analy-

sis to determine the vaporization rate. Unfortunately, however, all of the
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melted material could not be recovered. For these reasons the luminous
efficiency factor as conventionally defined (Eq. (6)) could not be determined.
Nevertheless, a luminous efficiency factor was calculated in terms of the
total mass loss rate. This was accomplished by inserting measured values of
total me.ss loss rate and total luminous intensity minus gas-cap radiation into
Eq. (6), thereby evaluating To. On the basis of the present tests, one can
argue in Jjustification of this procedure that large stone and iron meteors
almost certainly lose mass primarily by liquid runoff and secondarily by
vaporization. Although vaporization is certainly essential to the production
of light, it must follow from and be a consequence of melting.

The resulting values of luminous efficiency factor for the various mater-
ials are plotted in Fig. 17 as a function of the.Fourier modulus, at/Loz.
Fourier modulus is a convenient correlating parameter for luminoﬁsAefficiency
factor measurements because heat storage, acting as an energy sink, will
reduce luminosity. At values of mt/LOZ less than about 0.03 the experimentally
determined To's are constant, whereas at about 0.3 the value of T, has
decreased by more than two orders of magnitude. Although these experimental
data are undoubtedly too low because the total mass loss, rather than the
vapor mass loss determined luminous efficiency factor, the agreement with values
of 7T, from Refs. 11, 16, and 17 is surprisingly good for small values of
am/LOZ. The reference values of T, were corrected from "photographic" to

"visual" luminous efficiency factor as recommended by Verniani [11].
CONCLUSIONS

Ablation tests in high-enthalpy plasma Jjets that in certain respects simu-
late the entry environment of meteors led to éeveral conclusions about the
ablation behavior of stone and iron. It was found that low carbon steel and

igneous rock (gabbro and basalt) had ablation characteristics similar to those
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of natural iron and stone meteorite materials. Therefofe, ablation of
asteroidal meteors can be studied by testing readily available terrestrial
material.

Both stone and iron materials increase in frontal area during early stages
of ablgtion, and form flanges of low-density slag that approximately double the
frontal area. OSuch behavior results in a decrease in average density and in
the ballistic parameter, m/CDA. When these blobs of slag are shed abruptly,
the ballistic parameter increases suddenly, and this phenomenon is proposed
as an explanation of the fact that such anomalous behavior has been observed
for some meteors. Because flanges form on steel and iron meteorite models,
it 1s concluded that moisture apparently is not essential to foaming, although
its presence undoubtedly contributes to the process.

For heavy bodies ablating at low air density very little mass is vaporized,
perhaps because deceleration effects are not reproduced. Instead, heat soak,
melting, and subsequent liquid runoff apparently absorb the majority of the
incoming energy flux, possibly as a result of a mismatch between ballistic
parameter and stream density. The relatively low values of effective heats of
ablation determined from surface recession rates reflect this fact, especially
in steel and iron meteorite models tested at low-heat—transfer rates when
appreciable heat storage takes place. Conversely, when stone models are tested
at high-heat-transfer rates which result in a relatively low Fourier modulus
mt/LOZ, the measured values of effective heats of ablation, Q¥%, approach those
required tovmelt and vaporize the bodies completely.

Luminous intensity measurements indicate that the radiastion characteristics
of the igneous rocks basalt and gabbro closely match those of specimens cut from
natural stone meteorites. Similarly, low carbon steel and natural iron meteorite
exhibit closely matched luminous intensity characteristics. Over the simulated
altitude and velocity range, the luminosity of the metal models is less than

18



that of the stone models. Although the corresponding luminous efficiency factors
determined for the various materials are smaller than expected, the liquid runoff
is greater during static tests in the plasma jet than it would be for actual
meteoric entry where the inertial forces are large. Moreover, material blown
away frpm.the artificial meteor did not contribute to the luminosity measure-
ment; whereas the light of the entire meteor trail is included in photographic
determinations of luminous efficiency factor. Heat storage affected the lumin-
osity measurements; consequently the Fouriér modulus describing this effect
correlated the luminous efficiency factor data for both iron and stone bodies.

Although there are many .difficulties in establishing an experimental value,
the luminous efficiency factor approaches a reasonable limit as heat storage

effects decrease and mass loss by vaporization becomes important.
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Table I.- Artificial Meteor Physical Characteristics

Veined
Coarse octahedrite | intermediate
Stecy | L meteorite, | ehondrite | pery | Ganbro
Arizona Plainview,
Texas
Density, kg/m> 7,780 7,800 3,590 2,830 2,920
Composition: i
Fe, percent 99+ 89.7 17.23
Ni 9.1 1.58
c 15
’Siog 36.52 48.2 48.2
MgO 23.48 7.51 | 7.51
FeO and FeOs 8.87 9.11 9.11
Al-03 2.43 17.9 17.9
Ca0 1.83 10.99 10.99
NaO -85 2.55 2.55
K20 Ak .89 .89
Crz0s .36 —— ——
MnO 25 .13 .13
Ti0s .13 .97 97
P>0s .23 .28 .28
FeS 5.35 ——— —
H50 .33 1.45 1.45
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Table III.~- Test Schedule

Initial Final Exposure

Model Material Tegt ma.ss, mass, time, Remarks
no. point
grams  grams sec

hg  Steel B 63.78 62 .4k 45

50 Steel B 64.35 13.52 120

51  Steel D 63.88 6.22 57

52  Steel A 63.529 63.545 55 Gained 0.016 grams
53  Steel A 63.75 2795 90 :
54  Basalt D 22.08 2247 45 Gained 0.39 grams
55  Gabbro D 22.73 17.55 45

56  Steel D 63.89 13.20 50

57 Steel D 63.53 13.20 Lo

58 Iron Met. B 62 .22 58.20 45

59 Iron Met. C 47.56 32.17 hs

60 Iron Met. D 63.56 b7k 32.5

61 Iron Met. A 6l.72 56 .48 120

62 Stone Met. B 22.75 21.05 L5

64 Steel c 63.56 35.88 50

66  Steel B 63.95 61.99 Lo

67 Steel D 6L4.04 43.25 39

68 Stone Met. D 21.89 5.60 60

70  Stone Met. c 23.52 9.35 55

72  Stone Met. A 20.57 18.95 45

73 Iron Met. A 63.48 4kg9.15 120

74 . Gabbro A 22.49 20.00 62

75 Gabbro D 22.33 21.08 4.5

76  Gabbro c 23.66 22 .50 4o

78  Basalt B 22.35 21.93 53

79 Basalt D 21.67 21.09 L6

80 Basalt A 17.89 15.94 60

81 Gabbro B 22.08 21.37 61

82 Stone Met. E 28.97 20.25 11

83 Steel E 64.00 37.1 7.2

84  Gabbro E 22.94 10.30 7

85  Basalt E 22.75 19.36 3 Fractured at 3.0 sec
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Table IV.- Typical Artificial Meteor Foam Density

el ol MU TR Saienns
Steel D 7,870 l;,730 0.61
Iron Met. C 7,800 4, 370 0.56
Stone Met. A 3,590 1,725 0.48
Stone Met. c 3,590" 1,390 0.39
Stone Met. E 3,590 1,290 | 0.36
Gabbro c 2,920 1,076 0.37
Gabbro E 2,920 800 0.27
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